翻訳と辞書 |
Phenotype microarray : ウィキペディア英語版 | Phenotype microarray The phenotype microarray approach is a technology for high-throughput phenotyping of cells. A phenotype microarray system enables one to monitor simultaneously the phenotypic reaction of cells to environmental challenges or exogenous compounds in a high-throughput manner. The phenotypic reactions are recorded as either end-point measurements or respiration kinetics similar to growth curves. == Usages == High-throughput phenotypic testing is increasingly important for exploring the biology of bacteria, fungi, yeasts, and animal cell lines such as human cancer cells. Just as DNA microarrays and proteomic technologies have made it possible to assay the level of thousands of genes or proteins all a once, phenotype microarrays (PMs) make it possible to quantitatively measure thousands of cellular phenotypes all at once. The approach also offers potential for testing gene function and improving genome annotation. In contrast to the hitherto available molecular high-throughput technologies, phenotypic testing is processed with living cells, thus providing comprehensive information about the performance of entire cells. The major applications of the PM technology are in the fields of systems biology, microbial cell physiology and taxonomy, and mammalian cell physiology including clinical research such as on autism. Advantages of PMs over standard growth curves are that cellular respiration can be measured in environmental conditions where cellular replication (growth) may not be possible, and that respiration reactions are usually detected much earlier than cellular growth.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Phenotype microarray」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|